РЕШЕНИЯ ЗАДАНИЙ ДЛЯ 8 КЛАССА

Задание 1. Сформулируйте теорему, для проверки которой был организован представленный на рис. 1 компьютерный эксперимент. Докажите, что полученные данные противоречат сами себе. Объясните, как могло возникнуть это противоречие.

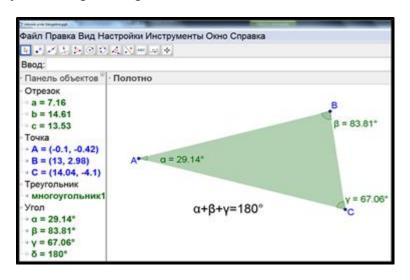


Рисунок 1

Баллы	Критерии (8 класс)
1	Сформулирована только теорема. Теорема не сформулирована и сделан вывод
	о том, что результаты измерения углов неверны. Аргументы либо отсутствуют
	либо являются неправдоподобными
3	Правильно сформулирована теорема о сумме углов треугольника. Сделан
	вывод о том, что результаты измерения углов противоречат этой теореме. Но,
	причины появления ошибки не названы или названы неверно
5	1 случай. Правильно сформулирована теорема о сумме углов треугольника.
	Сделан вывод о том, что результаты измерения углов противоречат этой
	теореме. Названы правдоподобные причины появления ошибка: погрешность
	округления, погрешность измерения.
	2 случай. Правильно сформулирована теорема о сумме углов треугольника.
	Описана суть внутренней противоречивости представленных на рисунке
	результатов эксперимента. Но, причины возникновения противоречия либо не
	названы, либо названные причины не являются правдоподобными
8	Правильно сформулирована теорема о сумме углов треугольника. Описана
	суть внутренней противоречивости представленных на рисунке результатов
	эксперимента. Названы правдоподобные причины возникновения этого
	противоречия: погрешность округления (измерения) и включение в алгоритм
	работы инструмента программы теоремы

Решение задания 1.

Компьютерный эксперимент, представленный на рисунке 1, был организован для проверки теоремы о сумме углов треугольника.

Сумма углов треугольника равна 180°.

Рисунок 2

На рис. 1 сумма углов треугольника равна 180,01°, что противоречит данным эксперимента, приведенным ниже под треугольником. Получается внутреннее противоречие, которое могло произойти из-за погрешности округления (измерения).

Задание 2.

На рисунке 2 изображен вечный календарь. Цифры на кубиках верхнего ряда служат для записи чисел от 01 до 31 (любой день месяца). Цифры на кубиках нижнего ряда — для записи чисел от 01 до 12 (номер месяца). Какие цифры размещены на каждом из четырех кубиков.

Баллы	Критерии (8 класс)
3	Сформулирована или представлена на эскизах кубиков только одна идея из
	трех
6	Сформулировано или представлено на эскизах кубиков несколько идей, но не
	все
10	Сформулированы четыре ключевых идеи: 1 — на всех кубиках, 2 — на трех кубиках; 0 должна быть на всех кубиках; для записи 6 и 9 должны быть на разных кубиках. Идеи могут быть представлены перечнем цифр на обоих кубиках

Решение задания 2.

1. Для того чтобы на календаре можно было поставить дни месяца, нужны цифры для составления чисел от 01 до 31.

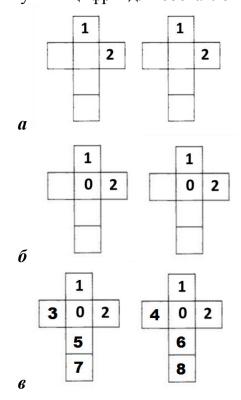
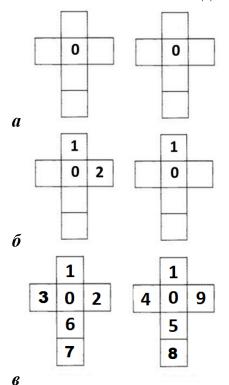


Рисунок 3

Идея первая: Цифры 1 и 2 должны быть на каждом из кубиков, так как они должны стоять в паре с каждой из оставшихся цифр (например, 11, 12, 13 и т.д.). См. рис. 3*а*.


Вторая идея: Цифра 0 также должна быть на каждом из кубиков, так как должна быть в паре с каждой из оставшихся цифр (например, 01, 10, 02, 20 и т.д.). См. рис. 36.

Дальше выставляем оставшиеся цифры на гранях кубов в произвольном порядке: 3,4,5,6,7,8.

Остается последняя цифра — 9, а свободных граней нет (рис. 3e).

Третья идея: Для цифры 9 можно использовать цифру 6, нужно только перевернуть кубик.

2. Год состоит из 12-ти месяцев, значит, необходимы цифры для составления чисел от 01 до 12.

Идея первая: Цифра 0 должна быть в паре с каждой из цифр (например, 01, 02, 10 и т.д.), поэтому она должна быть на каждом из кубиков. См. рис. 4а.

Вторая идея: Цифра 1 должна быть на каждом из кубиков, так как есть 11 месяц, 2 нужна только одна — 12месяц. См. рис. 46.

Дальше выставляем оставшиеся цифры на гранях кубов в произвольном порядке: 3, 4, 5, 6, 7, 8, 9.

Учитывая, что цифры 6 и 9 при перевороте переходят друг в друга, можно оставить одну грань кубика пустой.

Рисунок 4

Задание 3 (тах 15 баллов).

Предложите как можно больше способов перегибания треугольного листа бумаги, в результате которого он линиями сгиба разделится на три равновеликие фигуры (то есть фигуры равные по площади). Обоснуйте правильность построений.

Баллы	Критерии (7 -9 классы)
1	Представлен только один способ перегибания без описания и обоснования
3	Представлен и описан только один способ перегибания, без обоснования
5	Предложен один способ перегибания с доказательством
8	Представлено несколько способов перегибания, но без описания и
	доказательства
10	Представлено несколько способов перегибания, некоторые из которых доказаны.
15	Представлено несколько способов перегибания, все приведены с
	доказательством

Решение задания 3. Можно с помощью DGS или перегибанием листа бумаги.

1 способ опирается на знание формулы для вычисления площади: $s = \frac{1}{2}ah$. Треугольник следует разделить на 3 части так, чтобы основания и высоты треугольников были равны. Осуществим варианты деления стороны и высоты на 3 равные части (рис. 5а и 5б).

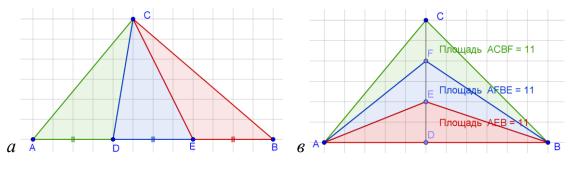


Рисунок 5

2 способ основан на свойстве медиан треугольника: медианы треугольника делят его на 6 равновеликих треугольников. Группируя равные треугольники в пары, получаем 2 варианта разбиения: на треугольники (рис. 6а) и четырехугольники (рис. 6б).

Рисунок 6

3 способ основан на свойстве средних линий треугольника: средние линии треугольника делят его на 4 равновеликих части. Применяя к четвертому треугольнику первый способ деления, получаем вариант деления, показанный на рис. 7а. Разделив стороны треугольника на 3 равные части, получаем вариант деления, показанный на рис. 7б.

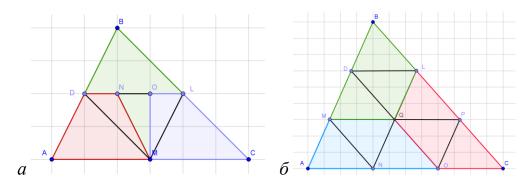


Рисунок 7

Задание 4 (тах 20 баллов).

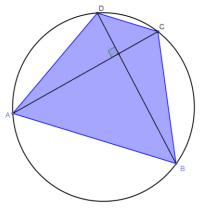


Рисунок 8

Постройте в графическом окне GeoGebra произвольную окружность. На ней отметьте произвольно две точки A и B. На отрезке AB, как на основании постройте трапецию ABCD, диагонали которой перпендикулярны, а точки C и D лежат на этой же окружности (см. рис. 8). Построение должно быть выполнено так, чтобы эти свойства трапеции сохранялись при перемещении точек A и B по окружности.

Баллы	Критерии (8 класс)
5	Построен четырехугольник, вписанный в окружность, но остальные свойства
	не являются динамически устойчивыми
10	Построен четырехугольник, вписанный в окружность. Он является
	трапецией, но не с перпендикулярными диагоналями либо, не является
	трапецией, но имеет перпендикулярные диагонали
15	Построена вписанная в окружность трапеция с перпендикулярными
	диагоналями. Все требуемые условием задачи свойства чертежа
	динамически устойчивы, но чертеж не достаточно общий, так как нарушен
	порядок задания исходных элементов чертежа
20	Все построения последовательны и правильны

Решение задания 4.

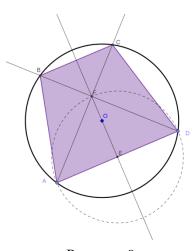


Рисунок 9

Построение:

Построить произвольно окружность.

Построить хорду AD и отметить её середину — точку E.

Провести перпендикулярную прямую к отрезку AD через току E.

Построить окружность с центром в точке E и радиусом ED.

Найти точку пересечения этой окружности с серединным перпендикуляром — точку F.

Провести лучи AF и DF.

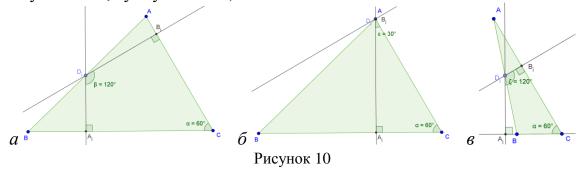
Найти точки пересечения этих лучей с исходной окружностью.

Построить четырехугольник \overrightarrow{ABCD} , который является трапецией (AD и BC параллельны), диагонали которой перпендикулярны.

Задание 5 (тах 30 баллов). (Задача предложена Р. Николаевым).

Дан треугольник ABC, в котором $\angle C = 60^\circ$. Сколько и где на стороне AB нужно отметить точек D_i , чтобы сумма углов $\angle B_iD_iA_i$, была равна 630°, где B_i и A_i основания перпендикуляров, опущенных из D_i на AC и BC соответственно.

Баллы	Критерии (8 класс)
10	Экспериментально установлено и сформулировано или использовано в
	дальнейших рассуждениях опорное утверждение о равенстве углов для
	внутренних точек основания 120°. Однако, требуемое по условию задачи
	количество и расположение точек определено неверно
15	Задача решена экспериментально, нет обоснования полученных
	результатов.
20	Задача решена, но не обосновано либо опорное утверждение, либо не
	достаточно обоснован выбор точек на основании
30	Задача решена, представлено доказательство всех ключевых моментов
	решения


Решение задачи № 5.

Возьмем на стороне AB произвольную точку $D_{\rm i}$, и рассмотрим четырехугольник $A_{\rm i}CB_{\rm i}$. Так как сумма углов четырехугольника равна 360°, то $\angle A_{\rm i}D_{\rm i}B_{\rm i}=120^\circ$ (рис. 10a).

Определим количество таких углов: 630° : 120° = 5 (ост. 30°).

На первый взгляд кажется, что задача не имеет решения. Однако, если точку $D_{\rm i}$ взять в вершине, то $\angle A_{\rm i}D_{\rm i}B_{\rm i}=30^\circ$ (рис. 10б). Это шестой угол. Эксперимент, проведенный в ИГС, может подсказать эту идею.

Результат задачи не зависит от вида треугольника (остроугольный, прямоугольный, тупоугольный).

Задание 6.

Изменяя чертеж к задаче № 5, составьте как можно больше новых задач. Формулировки своих задач можно записать или на листе бумаги, или в графическом окне GeoGebra (Живая геометрия, Математический конструктор и т.п.) с помощью инструмента «Надпись».

Баллы	Критерии (7-9 класс)	
Оценивается каждая составленная задача отдельно. Баллы суммируются.		
1	Сформулированная задача не связана с задачей 5. Формулировка задачи не	
	полная	
3	Сформулированная задача не связана с задачей 5. Формулировка задачи	
	полная и корректная	
5	Сформулированная задача связана с задачей 5. Формулировка задачи не	
	полная	
8	Сформулированная задача связана с задачей 5. Формулировка задачи полная	
	и корректная. Но, формулировка получена путем логического	

	преобразования условия задачи
10	Сформулированная задача связана с задачей 5. Формулировка задачи полная
	и корректная. Формулировка получена путем преобразования чертежа

Пример задачи, которая могла бы быть составлена:

1. Дан треугольник ABC, в котором $\angle C = 90^{\circ}$. Сколько и где на стороне AB нужно отметить точек $D_{\rm i}$, чтобы сумма углов $\angle B_{\rm i}D_{\rm i}A_{\rm i}$, была равна 630°, где $B_{\rm i}$ и $A_{\rm i}$ основания высот, проведенных из $D_{\rm i}$ на AC и BC соответственно.