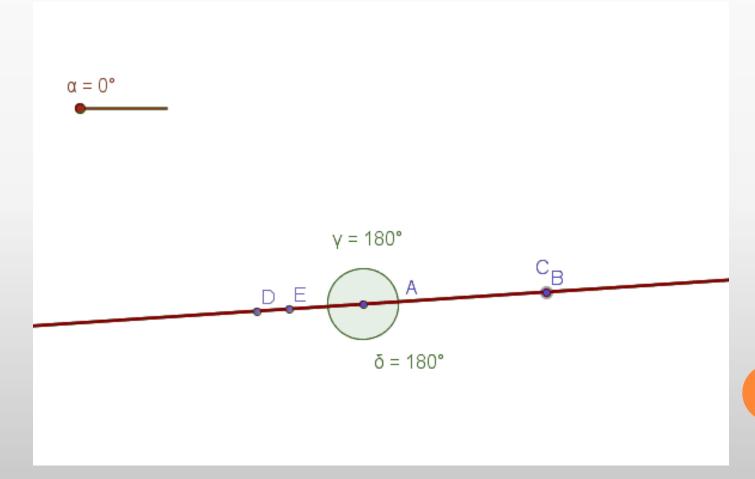
METOДИКА РАБОТЫ С ТЕОРЕМОЙ С ИСПОЛЬЗОВАНИЕМ DGS «GEOGEBRA»

ПРОЦЕСС ОБУЧЕНИЯ ДОКАЗАТЕЛЬСТВУ

- I. Этап обучения эмпирической проверке геометрических утверждений (7 класс, тема «Начальные геометрические сведения»): характеризуется формированием умений убеждать и убеждаться в справедливости геометрических положений с помощью компьютерного эксперимента на готовом динамическом чертеже, делать выводы из результатов эксперимента с учетом введенных параметров.
- и. Этап обучения логическому контролю правильности алгоритма построения динамического чертежа (7 класс, начиная с темы «Треугольники»): характеризуется формированием умений осуществлять логический контроль правильности алгоритма построения динамического чертежа для целей «компьютерного доказательства» с опорой на результаты анализа условия теоремы, а также умением делать выводы об установленной области истинности утверждения с учетом полноты экспериментальных проб.
- ти. Этап обучения дедуктивному доказательству (8 9 класс): характеризуется формированием умений логически объяснять установленный в ходе компьютерного эксперимента факт динамической устойчивости свойства геометрической конфигурации, т.е. проводить доказательства дедуктивным методом; а также использовать их для ликвидации выявленных недостатков эксперимента.

1. Этап обучения эмпирической проверке геометрических утверждений

- Обучение проведению эксперимента по заданному плану на готовом динамическом чертеже и получению выводов на основе анализа экспериментальных данных.
- Обучение планированию эксперимента для обоснования истинности теоремы.


1. Этап обучения эмпирической проверке геометрических утверждений

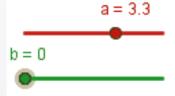
• Пример работы с теоремой «Вертикальные углы равны».

- 1. Постройте две пересекающиеся прямые.
- 2. Измерьте полученные углы.
- 3. Что вы обнаружили? (вертикальные углы равны).
- 4. Случайно ли то, что вертикальные углы получились равными?
- 5. Как проверить, что это не случайно? (перетащить точки на сторонах углов).
- 6. Всегда ли это будет выполняться, мы с вами не все случаи рассмотрели.
- 7. Предлагаю вам свой чертеж. Откройте файл 1.1
- 8. На моем чертеже имеются ползунки. Как вы думаете, какую роль они играют?
- 9. Как вы думаете, если его изменить, повлияет ли это на наш вывод?
- 10. Итак, мы установили, что на рассмотренных примерах, вертикальные углы равны.
- 11. В силу того, что шаг при задании значений ползунка был равен 1°, мы с вами не рассмотрели случаи, когда угол имеет величину, с точностью до десятых, сотых и т.д.
- В таких случаях математики проводят рассуждения. Мы с вами будем учиться это делать.

1. Этап обучения эмпирической проверке геометрических утверждений

• Пример работы с теоремой «Вертикальные углы равны».

2. ЭТАП ОБУЧЕНИЯ ЛОГИЧЕСКОМУ КОНТРОЛЮ ПРАВИЛЬНОСТИ АЛГОРИТМА ПОСТРОЕНИЯ ДИНАМИЧЕСКОГО


- Обучение умению обосновывать истинность геометрических утверждений с помощью полного компьютерного эксперимента («компьютерного доказательства») на самостоятельно построенных динамических чертежах по собственному плану.
- Обучение умению осуществлять логический контроль корректности отражения условия теоремы (задачи) динамическим чертежом и корректности использования самого чертежа при проведении «компьютерного доказательства»).

2. Этап обучения логическому контролю правильности алгоритма построения динамического

- Пример работы с теоремой «В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой»
- Постройте равнобедренный треугольник (учащиеся могут построить на клеточном поле, могут воспользоваться определением, а могут вовсе построить некорректно).
- Проведите в треугольнике: 1-я колонка биссектрису, 2-я колонка медиану, 3-я колонка высоту.
- Выясните, является ли в вашем случае биссектриса высотой и медианой, медиана высотой и биссектрисой, высота медианой и биссектрисой.
- Случайно ли это? Как проверить? (перетаскиванием). Следите за тем, чтобы треугольник оставался равнобедренным (у большинства учащихся треугольник перестал быть равнобедренным).
- В чем ошибка? (построили, не используя ни определение, ни свойство о равенстве углов при основании).
- Давайте построим, пользуясь, например, определением равнобедренного треугольника.

2. ЭТАП ОБУЧЕНИЯ ЛОГИЧЕСКОМУ КОНТРОЛЮ ПРАВИЛЬНОСТИ АЛГОРИТМА ПОСТРОЕНИЯ ДИНАМИЧЕСКОГО

• Пример работы с теоремой «В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой»

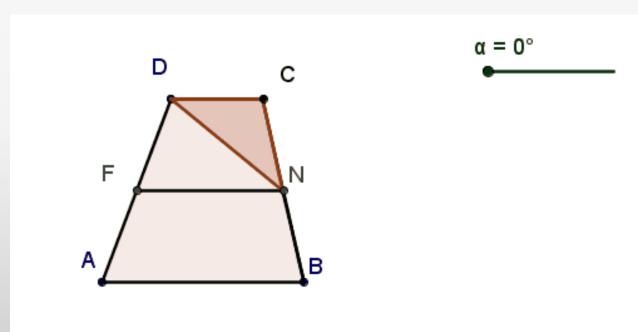
2. Пример работы с теоремой «В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой»

• Алгоритм построения в случае проверки первого утверждения (биссектриса является медианой и высотой) имеет вид:

Входные объекты	Выходной объект	Обоснование
(посылка)	(заключение)	
a, b	Треугольник АВС	Определение
		равнобедренного
		треугольника
∠A	Биссектриса ∠А	Определение биссектрисы
		угла
Биссектриса ∠А	ΔΑΗC=ΔΑΗΒ	Признак равенства
		треугольников по двум
		сторонам и углу между
		ними.
ΔΑΗC=ΔΑΗΒ	HC=HB	Вывод: АН – медиана по
		определению медианы
		треугольника
ΔΑΗC=ΔΑΗΒ	∠AHC=∠AHB=90°	Вывод: АН – высота по
		определению высоты
		треугольника

2. Пример работы с теоремой «В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой»

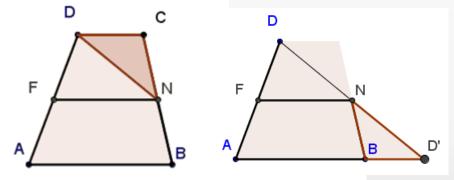
• Найдите допущенные ошибки при обосновании шагов построения:


Входные объекты	Выходной объект	Обоснование
(посылка)	(заключение)	
Входные объекты	Выходной объект	Обоснование
(посылка)	(заключение)	
a, b	Треугольник АВС	Определение
		равнобедренного
		треугольника
AH⊥BC	Высота АН	Определение медианы
Высота АН	ΔΑΗC=ΔΑΗΒ	Признак равенства
		треугольников по трем
		сторонам.
ΔΑΗC=ΔΑΗΒ	HC=HB	Вывод: АН – медиана по
		определению медианы
		треугольника
ΔΑΗC=ΔΑΗΒ	∠ C=∠B	Вывод: АН – биссектриса
		по определению
		биссектрисы угла

- 2. Пример работы с теоремой «В равнобедренном треугольнике медиана, проведенная к основанию, является высотой и биссектрисой»
- Обоснуйте правильность алгоритма построения, заполнив таблицу:

Входные	объекты	Выходной	объект	Обоснование
(посылка)		(заключение)		

- Обучение умению обосновывать динамическую устойчивость свойства геометрической конфигурации, т.е. проводить логические доказательства.
- Обучение умению использовать логические доказательства для ликвидации выявленных недостатков эксперимента.

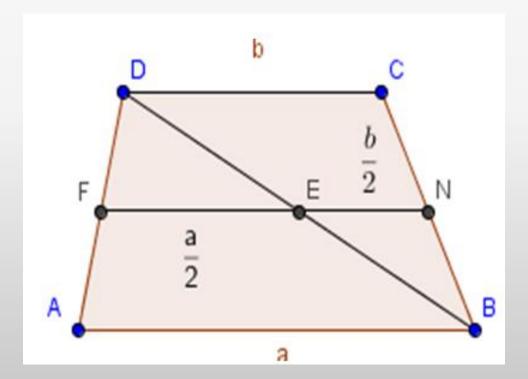

- Пример работы с теоремой о средней линии трапеции.
- Прокомментируйте доказательство теоремы, представленное в виде следующей анимации:

• Пример работы с теоремой о средней линии трапеции.

• В результате этого этапа учащиеся получат следующее

доказательство:

- CN=NB
$$\Rightarrow \coprod_{N}^{180^{\circ}}$$
 (C)=B


- DN=ND₁
$$\Rightarrow \widetilde{\coprod}_{N}^{180^{\circ}}$$
 (D)= D₁

- CD
$$||AB \Rightarrow D_1 \in AB|$$

- FN –средняя линия \triangle ADD₁⇒ FN \parallel AB и FN \parallel DC,

$$FN = \frac{AB + BD_1}{2} = \frac{AB + DC}{2} \cdot \underline{Y.T.\pi}.$$

• Этап формирования нового опыта может быть организован как запись обоснования этого же утверждения еще одним или несколькими методами, но с опорой на статический чертеж.

Спасибо за внимание!