VIl Mext0yHapoOHaA MOA00EHHAA HaYy4YHO-MPAKMUYECKAA WKOAA
“BobicoKkonpou3zsodumersbHble 8blvucaeHus Ha GRID cucmemax”™

G
‘
ok

Bydyujee ebl4ucaeHul: O MOBUAbHbIX AAaM@opm.

-~ ir,
00 5K30hAOMCHBIX CYMEBABMITbIOMEPHbIX cucmen

LA
.'! L; 113

'f."

LT ST T vy
Hynung
LRI
m IHI o

AUIRAIIE)

QJdSJO

ek ey ¥

iy N [

;:::f}:III'.”” flzr’#--.-

—

i o

i

'
g |

VIII International Youth Scientific School
“High-Performance Computing Using GRID Systems”

 Futu mputing:

Ler OS50V, VIoscow State U
14 (estailiziz el IEATI) 2

|

ALfc

5300 0F StUoent LSy I

=Y
o \

2500 julle Jer., (Jr_m) 9000 P11,

JS;

MSU Computing Center, 1956

%‘)GSS-

”Strela” is thTe first Russmrl
prod

Ol U

.‘ ’- Vs
Total area: 300
,t/on 150 kWatt

MSU Computing Center, 1959

“Setun” computer

:
n‘ Rl
M

Qﬁ

Computing History of Moscow State University
(from 1956 up to now)

]|

¢ “Strela” |

Computing History of Moscow State University
(from 1956 up to now)

Today the key statement in “computing area” is
“Building Up Parallel Computing World”. Why ?

There are a number of reasons...

Computer World

Supercomputers

. PCs, Laptops...

.

Tablets, Smartphones...

Degree of parallelism (+/- 8 years)
2009 2017 2025

(104

Supercomputers

2-8

Tablets, Smartphones...

Software Development Process
(We always make a compromise...)

e It’s much more difficult now
in the era of parallel computing...

e It was not easy 30 years ago...

Productivity Portability

Another reason — diversity of architectures

Software Development Process
(We always make a compromise...)

e It’s much more difficult now
in the era of parallel computing...

e It was not easy 30 years ago...

Productivity Portability

e Diversity of architectures ...
Code portability, performance portability — Is it Difficult?

Portability... Is It Always Difficult?

\\
<
—

A\ NN\ o<~

&’
"

=

Portability... Is It Always Difficult?

Complexity of Supercomputing Centers
(reasons to talk about “Building Up Parallel Computing World”)

Where are sources of efficiency losses?

Complexity of Supercomputing Centers

Is it difficult to control few components ? A few ?..

Users
Pro;ec;l; 4SS HSES Qriamzatlons
| “'Flm y: !_uﬂj 7 ﬂ nlq\ﬂ nm mr’tmns
\1.‘: ||I ‘ 1 " i
| E ’ l‘ “ l " Jobs

A few? Info on MSU “Lomonosov” Supercomputer :
(1.7 Pflops, 6000 computing nodes, 12K CPUs, 2K GPUs...)

Users ——
. 100 . .
Slv\l'SAd;“e'ment Projecis Llcensca Organizations
Partitio. s Softwat” | Hardwa.=%". ' Applications
components components o

J
Quotas V3

Queuess Statl.Il ‘ Us@

Current trend: all these numbers grow extremely fast !

d

It’s impossible to predict/describe a state of supercomputers...
We have almost lost control over supercomputers...

60-01

60-08

60-02

60-10

60-04

60-07

60-09

60-05

Structure of algorithms and applications

(one more reason to talk about “Building Up Parallel Computing World”)

Jul 02 19:17:56

Jul 02 19:19:36 Jul 02 19:21:16 Jul 02 19:22:56 Jul 02 19:24:36

- - - Level of CPU load
0% 25% 50% 75% 100%

Highcharts.com

Efficiency of Supercomputing Centers

(another reason to talk about “Building Up Parallel Computing World”)

Peak performance of a core = 12 Gflops

300000000

400

ﬂ fatatalal

L-"."fs'ﬂ"lﬂm"ﬁ

Mflop<r=_3,33%
[

4 -“‘-*-u-‘

R TR

Lo S
Wi

" | 300000000

200000000

100000000

0
15.10.1

5 23:50

T
16.10.13 11:50

T
16.10.13 23:50

T T
17.10.13 11:50 17.10.13 23:50

T
18.10.13 11:50

Average performance (one core) of “Chebyshev” supercomputer for 3 days

Today the key statement in “computing area” is
“Building Up Parallel Computing World”. Why ?

There are a number of reasons...

There are a lot of questions...

How well do we know properties, features
of Parallel Algorithms ?

Should we think about Parallel Algorithms?
Yes... Unfortunately, Yes...

How well do we know static and dynamic characteristics
of Parallel Programs ?

Should we think about properties of Parallel Programs?
Yes... Unfortunately, Yes...

How well do we know architectures of parallel computers ?
Should we think about architectures?

Yes... Unfortunately, Yes...

Have we ever met these questions before ? Yes, often...

Main stages to solve problems
(Supercomputing co-design chain)

Specific Problems, Grand Challenges, Applications

1
N\
\f

Mathematical Methods

1
\ "
\/

Algorithms

1
I\
\/

Programming Technologies

-

Source Codes

<

[Compilers

<

[Run-time Systems

<

Supercomputers, Architectures

Main stages to solve problems: Methods and Algorithms
(GAUSS elimination method)

L I D D
NOUL
QNI
,, | %)/ k
s =+ A®Lj)*()
- o\
(i) = (b(i) - ;;};A(i,i)
Serial only Parallel execution
doi=n,1,-1 doi=n,1,-1
s=0 - : s=0
M Order of iterations : :
doj=i+1,n < - > doj=n,i+l, -1
s = s + Al,)*(j) IS the only difference ! s = s + AlL)*(j)
end do end do
x(1) = (b(i) - s)/A(,) x(1) = (b(i) - s)/A(,)

end do end do

Main stages to solve problems
(Ubiquitous parallelism)

Specific Problems, Grand Challenges, Applications

1
N\
\f

Mathematical Methods A

1
\ "
\/

Algorithms A

1
I\
\/

Programming Technologies A

-

Source Codes A

<

[Compilers A

<

[Run-time Systems

<

Su percomputers, Architectu Fes Thousands, Millions, Billions...

Main stages to solve problems
(Where supercomputing co-design begins)

How to ensure efficiency of this supercomputing co-design chain ?

[Speci'ProbIemS, Grand Challenges, Applica s;’

|

Mathematical Methods

Algorithms

|

|

Programming Technologies

Source Codes

Compilers

Run-time Systems ‘

Q1010101 @1®1 01

Supercomputers, Architectures Tho‘js

L _Jik_JI

-

O-@-

ns...

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Spedi_)Problems, Grand Challenges, Applica s;’ ’

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

\

(o wontorng [T

| Tota

Su perc\ /cm’res

0101010101 @1010
J

[@1@1
@11
|On@r

w

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Spedi_)Problems, Grand Challenges, Applica s;’ ’

&

Mathematical Methods

Algoritpn:\s

Program/ \Plogies
/.ng} IAjes < 4

s

/ \\
/C/ompilers
—\

ems

Q1010101 @1®1 01

[@1@1
@11
|On@r

Supercomputing Co-Design Technologies and Tools

(JobDigest of an application)

100 VH‘:
= Tl

50

3arpyzka npoueccopa B %

CPULoa . .
) Fine analysis of

applications behavior

3HayeHue LoadAvg

N LoadAVG

Supercomputing Co-Design Technologies and Tools
(analysis at different levels)

“Chebyshev” supercomputer:
intensity of IB usage for
different partitions

100 000 000
80 000 000 [ﬁl ‘ e partit
. I A TR ‘. \ artitions:
W_ﬂ'& W’W | ”‘«. ! r(\ nm, h\“ 1~"L1 W || "‘ M | ‘) ’1 ——total
{ m“ { ‘ ,,J Lﬂ |;\ M lv H‘ ln} ‘Vl \ ||J ——bigmem
60000 000 HW\PI r‘/ﬂ‘m | L !M\ lﬁ I IA. I l'wf"g\. Mw\‘lvd“ h‘ | . — hdd
?i’v 1 [' W\’l] iJA.' ! W 1 U ——hddmem
\/\. t lV ——regular
M‘\{)mm] &C‘J‘ ﬂ ! (I 1 ——test
40 000 000 Rl
| e
20000000 — 1] ‘ |
K } ”Ufw ‘L'*"“'m el
1“1 Y T | Y |
P Ik | L | e L .
| L,] ' 1 1
18.11(12013 0:00 19.11.2;)13 0:00 20.11.2(1)13 0:00 21.11.20130:00 22.11.20130:00 23.11.20130:00 24.11.20130:00

488 cores

Supercomputing Co-Design Technologies and Tools
(How well do we control a state of supercomputers?)

s — Level of CPU load

488 cores: WASTED time for 22 hours !

LoadAVG

What could be a reason of this situation?

- Hardware failure? Yes, it could be ...
- Software failure? Yes ...
- Error in the code? Yes ...

- Algorithmic problem? Yes ...

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

Large numbers in supercomputers: cores, processors, accelerators, nodes, HW&SW
components, files, indexes, users, projects,
processes, threads, running

and queued jobs...

e~
S~

17 Jid 7 [L) e *
m'”mymuuuum @

W b) ORI r: i oy

——

T
A

j‘lﬂ"

We don’t know for sure the current
state of supercomputer’s components ...

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

What is now? We hope that a component works until we get an evidence that
it has failed.

i ’.”“ . —
s

A

‘ Skl

Ij{[g,,‘“/ n! ”“H ﬂ !;! " ﬂ ﬂ rg r@

What do we need? T f‘ Z —F

- By L=,

il | | i Moo P& AT0pHy

Our expectations = Reallty

We need a guarantee:
if something goes wrong inside a
supercomputer we shall be notified immediately.

We want a system behaves in a way we expect it should behave.

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

If discrepancy occurs between our expectations and supercomputer behavior (i.e. reality)
we need to know immediately about it.

How can we do that? Supercomputer is huge, we can’t control it to a full
extent any more.

But... supercomputer can do it itself (instead of us), if we explain
what “our expectations” are.

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Spedi_)Problems, Grand Challenges, Applica s;’ ’

&

Mathematical Methods

Algoritpn:\s

N\

Progra m/ \Plogies

/ Qoec, /ﬂes
/ \ /C/ompllers B

Q1010101 @1®1 01

MOTTO“ System

OOt
IL i i
|On@r

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

Our expectations Reality
l Monitoiring data
Formal model of a supercomputer > Supercomputer

Supercomputers should be autonomous in self-control.
(They become more dynamic, more sophisticated, more and more parallel)

...The larger supercomputers, the more autonomous they should be...

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

A guarantee of “our expectations = reality”, how this can be done?
« aformal model of supercomputers (model is a graph),
« aset of formal rules,
e aset of reactions,
Autonomous life and control of MSU supercomputers:
-“Chebyshev” supercomputer, 60 Tflops, 625 CPUs:
10 228 nodes, 24 698 edges, 205 044 attributes, 160 rules, 100 reactions;

- “Lomonosov” supercomputer, 1.7 Pflops, 12 000 CPUs, 2 000 GPU:
116 000 nodes, 332 000 edges, 2 400 000 attributes,...

Initial deployment, Detection of faults, critical and emergency situations, Turning off minimum amount of hardware, Self
diagnostics, Previous accidents, etc. are done according to a model and rules.

Current trend: many decisions about control over HW&SW of supercomputers
must be taken automatically.

Algorithms and programes...
Are they important in the supercomputing
co-design chain?

60-01

60-08

60-02

60-10

60-04

60-07

60-09

60-05

What is a good parallel program / algorithm?

Jul 02 19:17:56 Jul 02 19:19:36 Jul 02 19:21:16 Jul 02 19:22:56

- - - Level of CPU load
0% 25% 50% 75% 100%

Jul 02 19:24:36

Highcharts.com

Have we ever met these questions before ? Yes, often...

Six generations of computer architectures —
— six battles for parallel applications,
for high performance, good scalability and efficiency...

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Vector computers

Mid 70-s.

Features: pipelined functional units, vector
instructions, vector registers.

Programming: vectorization of the innermost
loops.

Cray-1 supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Vector-parallel computers

80-s.

Features: pipelined functional units, vector
instructions, vector registers.
2-32 processors, shared memory.

Programming: vectorization of the innermost
loops, parallelization of outer loops.

Cray Y-MP supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Massive-parallel computers

90-s.

Features: thousands of processors, distributed
memory.

Programming: explicit message passing and data
distribution, MPI.

Intel Paragon XPS140 supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Sun StarFire supercomputer

Shared-memory computers

Mid 90-s.

Features: tens/hundreds of processors, shared
memory.

Programming: single address space, local and
shared variables, OpenMP.

6 Generations of computers and programming paradigms
(endless rewriting of applications)

“K” supercomputer

Clusters of SPM-nodes

2000-s.

Features: tens/hundreds thousands of nodes,
distributed memory.
Tens of processors/cores, shared memory.

Programming: hybrid parallel programming
technology MPI + OpenMP.

6 Generations of computers and programming paradigms
(endless rewriting of applications)

WB{K‘. s

-
o
-

-

Tianhe-2 supercomputer

)

Clusters of SMP-nodes with accelerators

Mid 2000-s.

Features: tens/hundreds thousands of nodes,
distributed memory.

Tens of processors/cores, shared memory. Several
accelerators (GPUs, Phi’s).

Programming: MPl+OpenMP+0OpenCL/CUDA;

Generations of Parallel Computer Architectures
(or How often have we have to rewrite applications completely?)

Parallel programming paradigms (from the 70s up to now):

70s - Loop Vectorization (innermost)

80s - Loop Parallelization (outer) + Vectorization (innermost)

90s - MPI

mid 90s - OpenMP

mid 2000s - MPI+OpenMP

2010s - CUDA, OpenCL, MPI+OpenMP+accelerators (GPU, Xeon Phi)

Changes in computer architectures do not change algorithms! But...

For each generation of a new computing platform we have to:

- Analyze algorithms to find a way to match better features and properties of
the platform ;

- Express the properties of algorithms we found to obtain efficient
Implementation for the platform.

Changes in computer architectures do not change algorithms!
(Algorithms remain the same)

Are these figures different?

What are possible representations of this algorithm?

Generations of Parallel Computer Architectures
(or How often have we have to rewrite applications completely?)

Parallel programming paradigms (from the 70s up to now):

70s - Loop Vectorization (innermost)
80s - Loop Parallelization (outer) + Vectorization (innermost)
90s - MPI

mid 90s - OpenMP

mid 2000s - MPI+OpenMP
2010s - CUDA, OpenCL, MPI+OpenMP+accelerators

Can we analyze
algorithms
once and for all

Changes in computer architectures do not change algorit
For each generation of a new computing platform we have to:

ﬂze algorithms to find a way to match better features and p
platform ;

- Express the properties of algorithms we found to obtain efficient
Implementation for the platform.

What are key properties of an algorithm
we need to analyze and describe to obtain an efficient
implementation in the future?

What properties are important?

Unified (complete) description of an algorithm:
What do we need to take into account ?

Description of Algorithms
(What should be included in this description?)

Information Graph Determinacy
Computational kernel

Locality of computations
Scalability Macrostructure

Performance [. Data locality Mathematical description
Communication profile . o
Serial Complexity Properties and Features Efficiency

Resource of Parallelism Computational intensity
Input / Output data

Description of Algorithms
(at the starting point: Cholesky decomposition)

Description

For positive definite Hermitian matrices (symmetric matrices in the real case), we use the decomposition 4 — [, [.*.where [, isthe
lower triangular matrix &, or the decomposition /4 = [J*[J . where [] is the upper triangular matrix &@. These forms of the Cholesky
decomposition are equivalent in the sense of the amount of arithmetic operations and are different in the sense of data represntation.
The essence of this decomposition consists in the implementation of formulas obtained uniguely for the elements of the matrix J, from
the above equality. The Cholesky decomposition is widely used due to the following features.

Mathematical Description

Remarks on the Algorithm

Input data: a symmetric positive definite matrix 4 whose elements are denoted by @45).
Output data: the lower triangular matrix [, whose elements are denoted by l; i)

The Cholesky algorithm can be represented in the form

i = 311,

a1

'!jl - / 1 jE [Q:H]:
11
i—1
f = i — ZE':Z'?'}.'- i € [2,n],
p=1
i—1
Ejtz i — Eip'!jp /Eﬂ EE[?H—I]}E[E+1H]

The Cholesky decomposition allows one to
use the so-called accumulation mode due to
the fact that the significant part of
computation involves dot product
operations. Hence, these dot products can
be accumulated in double precision for
additional accuracy. In this mode, the
Cholesky method has the least equivalent
perturbation. During the process of
decomposition, no growth of the matrix
elements can occur, since the matrix is
symmetric and positive definite. Thus, the
Cholesky algorithm is unconditionally stable.

Description of Algorithms

(at the starting point: Cholesky decomposition)

Computational Kernel

nin —
A computational kernel of its serial version can be composed of Q dot products of the matrix rows:

i—1

E E‘P'!jin-

p=1 Data movements are extremely important!

Serial Complexity Baseline Serial Implementation
The following number of operations should be performed to decompose a po 1=1, N

s = A(I,T)

matrix of order y, using a serial version of the Cholesky algorithm: r mn wa
S =S - DEROD(A(I,IB), A(I,IE))

* 71 square roots, T T
ﬂl:ﬂ _]_) &(I,I) = SQRT (5)
e - divisiona, DO J=1I+l, W
2 s = a(J,1)
K k Do Ip=1, I-1
nw-n_ nt—-n__ | | L
« — multiplications and — additions (subtractions): the main AR L A R e o A DR
ﬁ END DO
. A(J,I) = S/A(I,I)
amount of computational work. Data movements are extremely important! END DO
END DO

Additional Info

There exist block versions of this algorithm;

Description of Algorithms

(at the starting point: Cholesky decomposition)

Information Structure

Description of Algorithms
(at the starting point: Cholesky decomposition)

Data locality (memory usage profile)

3500
. vos vt e
2 Tiriiiiiil e
I $ BEELE" o
Prifid fiifine
_."- 20
. __
Figure 3. implementation of the Chofesky algornithm. A general memery|
J—
.
Figure 4. Impiementaiion of the Cholesky algonihm. & profle fragment (several firs
Eeralions).

Figure 5 Implementation of ihe Cholesky algommm, A prodds ragment (2 pan of A

a3 single deration)

Description of Algorithms
(at the starting point: Cholesky decomposition)

Summary

1 Properties and structure of the algorithm Properties of the algorithm:

» Sequential complexity: O(n‘q)
» Height of the parallel form: O (n)
« Width of the paraliel form: ((n?)

1.1 General description

The Cholesky decompaosition algorithm was first proposed by Andre-Louis Cholesky
(October 15, 1875 - August 31, 1918) at the end of the First World War shortly before he was

killed in battle. He was a French military officer and mathematician. The idea of this algorithm was « Amount of input data: nl:n + 1)
published in 1924 by his fellow officer and, later, was used by Banachiewicz in 1938 [7]. In the 2
Russian mathematical literature, the Cholesky decomposition is also known as the square-root n(n + 1)

« Amount of output data:
method [1-3] due to the square root operations used in this decomposition and not used in 2

Gaussian elimination.

Originally, the Cholesky decomposition was used only for dense real symmetric positive definite matrices. At present, the application of this
decomposition is much wider. For example, it can also be employed for the case of Hermitian matrices. In order to increase the computing
performance, its block versions are often applied.

In the case of sparse matrices, the Cholesky decomposition is also widely used as the main stage of a direct method for solving linear
systems. In order to reduce the memory requirements and the profile of the matrix, special reordering strategies are applied to minimize the
number of arithmetic operations. A number of reordering strategies are used to identify the independent matrix blocks for parallel computing
systems.

Description of Algorithms
(at the starting point: Cholesky decomposition)

Scalability (performance) * Efficiency *
Performance (Gflops) Efficiency (%)
2500 ¢

2500 3 [
2000 2.5

1500 2

2000 F

1500 e
1000 1.5 }

1000 500 .| e
500 | 9 0.5
0 00
5500
Hatrix order 35 : o= Nunber of processes150

550 o 4000 4500

25
3000 ;
2500 Matrix order
300 2000
1500
1000

* Scalability, performance, efficiency were measured on MSU “Lomonosov” Supercomputer

Description of Algorithms
(at the starting point: Cholesky decomposition)

. Dynamic Properties * CPU Load

4 Floating point operations per second (FLOPS)
.w;‘w Data transfer speed (bytes/sec)
y Data transfer speed (packages/sec)
s L1 cache-misses

: L3 cache-misses

Memory Read Operations
o — Floating point operations per second (FLOPS)
£ Data transfer speed (bytes/sec)

'''''

|
' ' s

| | i1 |
Jonllyr l"!l\h — “,li'{n JLa i;‘_,,;l",}ﬂ,,% I H!I"L ol ;i{‘l e l“‘;_’é“h.‘,\,- A f
. - T R S\ SVl Pt ™™ vt e L

* Dynamic Properties were obtained on MSU “Lomonosov” Supercomputer

It is very useful information about the algorithm,
we desperately need it.

But... CHALLENGES are everywhere...

Information structure: how to extract, describe, show... ?
(challenges of the algorithm description)

J b § b4 ? k|
Ty Tm*? 2 ? ! : L : 2 ‘ '
bt b b . I ! ! ¢—6& 6@
L ? ? '
. . . -® . 2 ,2 t b4 . ? ? O :
L : : 2 : ¢ 4 & & @
. L L 4 & ® ® 4 { f ! .
? ? o N
1+ @ . . I— -® ? 2’ ’2 2 2 ." ‘ ‘ ‘
| K‘ ’ L , . L] £l \ P \ p, ‘ 4\ -
1 noi ? : ? ¢ ¢ €
i e ° | . E .
® o "’ """"""""" o ' .‘» & &
° D
PSS - How to draw a potentially unlimited graph ?
I N N - How to draw a potentially multidimensional graph ?

- How to show dependency of the graph on a problem size ?

Information structure: how to extract, describe, show... ?
(challenges of the algorithm description)

Information structure: how to extract, describe, show... ?
(challenges of the algorithm description)

a
i

PR i
S ="
.

f——

y . A \\\. s
AL
‘ We
AN

W
\1
i

Information structure: how to extract, describe, show... ?
(challenges of the algorithm description)

Doi=1,n How to formalize the information structure?
Doj=1,n Polyhedra, inequalities, vector functions...
1 AG,j)=0
Dok=1,n
2 A(L,)) = A(l,)) + B(1,k)*C(k,))
(1<i<n
) 1<j3<n
1<i1<n
1<j<n 2<k<n
k=1 $ =t
=] kg =k -1 j
uz (1) uz (2) v

Information structure: how to extract, describe, show... ?
(challenges of the algorithm description)

DO i=1,n l<jp 2
DOj=1,n L (10 (i ~ 1
P o [+j<n D, = +
U(i+])=U(2*n—-1—-j+1)*q+p o -2-1)\J) \2n+2
EndDO n+2<2i+] -
EndDO
)) X
) i '\\v"’::\
\ \ <
AT f...bkf" i\ o AN 5
WV AN W -
\ -‘\ . ¢>(\'-. H{"'-
-.,\ \\\ ; 3 '"\ '1'."__'%
DONISEE i N\ %
DO j=1,n-i Parallel loop ! NN) 4 .
UCi+j)=U(2"n-i-j+1)*q+p
End DO AN N g
DOj=n-i+1,n Parallelloop! 1 n\“i‘_}: \ .
U(i+])=U(2*n—-i—-j+1)*g+p N\ 5 2 NN
End DO -
End DO j N
;‘ x 1‘\\

Potential parallelism: how to extract, describe, show... ?
(challenges of the algorithm description)

I_l I_lJ I_lJ |__1_| HVI V — set of vertices
y y y

E — set of edges

y
2 2 2 2 FIV]

3 3 3 8 | 3 | }IE| 3 3 3 31 | 3] }IEl

4] [2] |'4T|'i4?r‘4'_|}IEI

=
: D [5] 1 51 051 0510 <
i @
E6 6 6 6| |6]}Iv &2
-\§§ 7

7 |1 2 s A MY

Minimum spanning tree [ext teration]
resource of classic parallelism based ij
(p exit

on information structure)

Potential parallelism: how to extract, describe, show... ?
(challenges of the algorithm description)

init process
MST(E, UE,) = MST(MST(EI) U MST(E,)), —= compute MST compute MST compute MST

E=E UE, W

compute MST

A
solve results

exit

Minimum spanning tree
(resource of “mathematical” parallelism)

Potential parallelism: how to extract, describe, show... ?
(challenges of the algorithm description)

I_l I_lJ I_lJ |__1_| HVI V —set of vertices
y y y y E — set of edges
2 2 2 2 HIVI]
Indeterminacy (irregularity)
A
Important for performance 3 3 3 8 |-z 3 | }IE]| 3 3 3 3| 3 | }IE]

portabiity

4] [2] |'4Tri4Tr‘4{_|}lEl

e
|J5 HIE]

== =7y

Sttt

5 }IE]
Inde inacy (irregularity) e 7
Important for performance E(; 6 6 6| | 6]}V
portability]
1 Al P7] - L]
ES | | 8 8 | IVl

Minimum spanning tree
(resource of information parallelism)

HIVI

I next iteration I

Y
| exit I

single iteration

Data locality: a number of open questions

(challenges of the algorithm description)

How to evaluate spatial and temporal data locality of a program ?

How to compare spatial and temporal data locality of programs ?

/ Linpack

FFT

i L2 e RENDOM ACCeSS)

Data locality: a number of open questions
(challenges of the algorithm description)

How to evaluate spatial and temporal data locality of a program ?

How to compare spatial and temporal data locality of programs ?

Can we predict data locality in future implementations by using information from
algorithms only ?

What does it mean “data locality of algorithm” ?

What does it mean “algorithm with good/bad locality” ?

There are no data structures in algorithms, locality can’t be applied to algorithms!
At the same time algorithms form the basis of programs...

Properties and Structures of Algorithms...

Can we represent and describe them?

Can we analyze
algorithms
once and for all

Changes in computer architectures do not change algorit

For each generation of a new computing platform we have to:

ﬂze algorithms to find a way to match better features and p
platform ;

- Express the properties of algorithms we found to obtain efficient
Implementation for the platform.

Properties and Structures of Algorithms...

Can we analyze
algorithms
once and for all

Yes, we can! AlgoWiki

http://AlgoWiki-Project.org

ﬂze algorithms to find a way to match better features and p
platform ;

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Speci(_ JProblems, Grand@s‘nges, Applica s;’ ’

&

o

| gowiki Project thods ,

S
Progra m/ \Plogies

,/ .\Qg/‘;& ,Ajes

OnO101010Or

Q
/ ©° /Cémpilers B

WC’&OTTO“ System

B
@11
|On@r

Description of Algorithms
(What should be included in this description?)

Algorithms: Theoretical Part

(machine-independent properties,

“Once and for all”) Algorithms: Implementation Issues

AlgoWiki

1% Open Encyclopediaof Par. % | 4=

| ‘ U algowiki-project.org/en/Open_Encyciopedia_of_Parallel_Algarith

| gAlgo Page . Dacussion
| Open Encyclopedia of Parallel Algorithmic Features

Wee page Welcome! Join us!
Feram
Recent chorges AlgoWiki is an open encyclopeda of algorithms” properties and § of thair impk jons on different hardware

from maokle to extreme scale, which aflows for collaboration with the worldwide computing community on algorthm ds;

Fie wizrage
New fles
Upload fe

Teck
What ik nere
Reated chorges
Specal pages
Frinable versian
Permaneat ink
Page nisreation

= ottt B0gusgen

Pycomi

« Saquential complaxity.

u First Workd War shoelly before he was killed n battle He was

¢!

finematician The ides of this algonthm was published in 1924 by his « Amount of input dats
fallo 85 used by Banachsewicz in 1938 [7] In the Russian mathematical Merature
the C fecomposition is aisn known a8 the square-root method [1-3] dus to the square 200! o Amount of output data

operations used in this decompasition and not used in Gaussian slimnation

Properties of the algorithm:

o™

« Haight of the parael form ([)
« Width of the paralial foem: ()(n®)
nin41)

nin+1)
2

Originally, the Cholesky decomposition was used only for dense real symmetnc postive defirste

matnces. At present, tha application of this decemposdion is much wider, For axampe. £ can also be employed for the case of Harmitian matncas. In

orded Lo merease the computing peformance, s bock versons are often apphed

In the case of sparse matnces. the Cholesky decomposition 15 also widely used as the mam stage of 3 direct method for sohang Anear systems. In

= ! - N . = - - - E——Y bt e e a2 VY TVEEEE TS ST\ .

—a

wBe 9 &N

Cramie accowal Log 0

Aesd View noarce View matory | Seard! Q

BEERREE

PFerformance for dense matry mutipicaton

Work organization

Descrption of algomhm propertes and structurs
Guides to wnting sections of the algorthm's descnption

Glossary
Help with editing

Readiness of articles

Finished articles
» Smgle-quist transform of & state vector
« Two-sided Thomas algorthm, pomtwiss verson
« Poisson equation, sohang with DFT
« Thomas algonthm. pointwise version
« Backward substitution

|

http://AlgoWiki-Project.org

Building Up Intelligible Parallel Computing World

A final remark...

Problems
and Challenges

Parallel
Computing
Technologies

Parallel
Computing
Education

Building Up Parallel Computing World

VIII International Youth Scientific School
“High-Performance Computing Using GRID Systems”

Prof: V/r/cmuf /oévodin

\ on. Jl/,Jr»[r"omo

ve

gy 0 /”k
ulu,nn

y Director, ff@:’c/m/ GO puting Ce CenteraV/isU

fj”’/i‘:?/r;;ﬂ Quantum m‘prfhr/r/r,, CVIC, IVISC t
198 Ve neE n : ._1, it . s

11 @6)¢clfic

LI e A
1" 1
'

VIII International Youth Scientific School
“High-Performance Computing Using GRID Systems”

At

o i

o

bsige00a ,);J 5b eHuUmaHUE!

: b)'L

y 3 ~
_inr Prof: V/r/urfrff /‘M/Jr/m

W gy
muunn

r/')"”"ff Director,; sz'ﬁmn BT putin g Center, f/:u

(Rt

D RTEERTITE S

glefefle Jj J#,)rf 'm” G "f]_)’./,)"[r'()‘fﬂfj E el) r%t._/,anrum In‘prrr)r/r/ru, C/ G //5/ t

IR TN

M T
IR TN
fmn g 8

LR TITNTIT B

1 CUgilfc

g it'ij,' ',,
{HS i

