
VIII Международная молодежная научно-практическая школа
“Высокопроизводительные вычисления на GRID системах”

Будущее вычислений: от мобильных платформ
до экзафлопсных суперкомпьютерных систем

Вл.В.Воеводин
чл.-корр. РАН, профессор,

Заместитель директора НИВЦ МГУ,
Заведующий кафедрой Суперкомпьютеров и квантовой информатики ВМК МГУ

voevodin@parallel.ru

6-е февраля, 2017, САФУ, Архангельск

VIII International Youth Scientific School
“High-Performance Computing Using GRID Systems”

Future Computing:
from Mobile Platforms to Exascale Supercomputing Systems

Prof. Vladimir Voevodin
Deputy Director, Research Computing Center, MSU

Head of Department on Supercomputers and Quantum Informatics, CMC, MSU

voevodin@parallel.ru

February 6th, 2017, NARFU, Arkhangelsk

Lomonosov Moscow State University
(established in 1755)

41 faculties
350+ departments

5 major research institutes

45 000+ students,
2500 full doctors (Dr.Sci.), 6000 PhDs,

1000+ full professors,
5000 researchers.

MSU Computing Center, 1956

Peak performance: 2000 instr/sec
Total area: 300 m2

Power consumption: 150 kWatt

“Strela” is the first Russian mass-
production computer

MSU Computing Center, 1959

The first computer in the world based on
ternary (-1/0/1) logic.

“Setun” computer

1956 1959 1967

20092008

2008

2003

2000

103

1015

106

1010

“Strela” “Setun” BESM-6

BlueGene/P

“Chebyshev”

“Lomonosov” / “Lomonosov-2”

Computing History of Moscow State University
(from 1956 up to now)

Today the key statement in “computing area” is
“Building Up Parallel Computing World”. Why ?

There are a number of reasons…

Computing History of Moscow State University
(from 1956 up to now)

Tablets, Smartphones…

PCs, Laptops…

Servers…

Supercomputers

Computer World

Tablets, Smartphones…

PCs, Laptops…

Servers…

Supercomputers

102

103

104

109

2025

1-4

4-8

12-64

107

2017

1

1

2-8

105

2009

Degree of parallelism (+/- 8 years)

Software Development Process
(We always make a compromise…)

Efficiency

PortabilityProductivity

 It was not easy 30 years ago…  It’s much more difficult now
in the era of parallel computing…

Another reason – diversity of architectures

Software Development Process
(We always make a compromise…)

Efficiency

PortabilityProductivity

 It was not easy 30 years ago…  It’s much more difficult now
in the era of parallel computing…

 Diversity of architectures …
Code portability, performance portability – Is it Difficult?

Portability… Is It Always Difficult?

Portability… Is It Always Difficult?

Complexity of Supercomputing Centers
(reasons to talk about “Building Up Parallel Computing World”)

Supercomputing
Center

Where are sources of efficiency losses?

LicensesProjects

Users

Software
components

Quotas

Organizations

Hardware
components

Statuses

ApplicationsPartitions

Queues Jobs

Users
SysAdmins
Management

Is it difficult to control few components ? A few ?..

Complexity of Supercomputing Centers

A few? Info on MSU “Lomonosov” Supercomputer :
(1.7 Pflops, 6000 computing nodes, 12K CPUs, 2K GPUs…)

LicensesProjects

Users

Software
components

Quotas

Organizations

Hardware
components

Statuses

ApplicationsPartitions

Queues Jobs

400

100

100 300

60025 000
15

20

2500
30

1000 per day

20

Users
SysAdmins
Management

Current trend: all these numbers grow extremely fast !

It’s impossible to predict/describe a state of supercomputers…

We have almost lost control over supercomputers…

Structure of algorithms and applications
(one more reason to talk about “Building Up Parallel Computing World”)

– Level of CPU load

Average performance (one core) of “Chebyshev” supercomputer for 3 days

Efficiency of Supercomputing Centers
(another reason to talk about “Building Up Parallel Computing World”)

400 Mflops = 3,33%

Peak performance of a core = 12 Gflops

Today the key statement in “computing area” is
“Building Up Parallel Computing World”. Why ?

There are a number of reasons…

There are a lot of questions…

How well do we know architectures of parallel computers ?
Should we think about architectures?

Yes… Unfortunately, Yes…

How well do we know properties, features
of Parallel Algorithms ?

Should we think about Parallel Algorithms?
Yes… Unfortunately, Yes…

How well do we know static and dynamic characteristics
of Parallel Programs ?

Should we think about properties of Parallel Programs?
Yes… Unfortunately, Yes…

Have we ever met these questions before ? Yes, often…

Main stages to solve problems
(Supercomputing co-design chain)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Main stages to solve problems: Methods and Algorithms
(GAUSS elimination method)

do i = n, 1, -1
s = 0
do j = i+1, n

s = s + A(i,j)*x(j)
end do
x(i) = (b(i) - s)/A(i,i)

end do

x(i) = (b(i) - s)/A(i,i)

s = s + A(i,j)*x(j)

s = s + A(i,j)*x(j)

x(i) = (b(i) - s)/A(i,i)

do i = n, 1, -1
s = 0
do j = n, i+1, -1

s = s + A(i,j)*x(j)
end do
x(i) = (b(i) - s)/A(i,i)

end do

Order of iterations
is the only difference !

Serial only Parallel execution

Main stages to solve problems
(Ubiquitous parallelism)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Thousands, Millions, Billions…

Main stages to solve problems
(Where supercomputing co-design begins)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Thousands, Millions, Billions…

How to ensure efficiency of this supercomputing co-design chain ?

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Supercomputing Co-Design Technologies and Tools
(JobDigest of an application)

Fine analysis of
applications behavior

CPULoad

LoadAVG

Supercomputing Co-Design Technologies and Tools
(analysis at different levels)

“Chebyshev” supercomputer:
intensity of IB usage for

different partitions

Partitions:

– Level of CPU load

48
8

co
re

s

LoadAVG

488 cores: WASTED time for 22 hours !

What could be a reason of this situation?
- Hardware failure? Yes, it could be …
- Software failure? Yes …
- Error in the code? Yes …
- Algorithmic problem? Yes …

Supercomputing Co-Design Technologies and Tools
(How well do we control a state of supercomputers?)

Large numbers in supercomputers: cores, processors, accelerators, nodes, HW&SW
components, files, indexes, users, projects,
processes, threads, running
and queued jobs…

We don’t know for sure the current
state of supercomputer’s components …

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

What is now? We hope that a component works until we get an evidence that
it has failed.

What do we need?

We need a guarantee:
if something goes wrong inside a
supercomputer we shall be notified immediately.

We want a system behaves in a way we expect it should behave.

Our expectations = Reality

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

If discrepancy occurs between our expectations and supercomputer behavior (i.e. reality)
we need to know immediately about it.

How can we do that? Supercomputer is huge, we can’t control it to a full
extent any more.

But… supercomputer can do it itself (instead of us), if we explain
what “our expectations” are.

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Supercomputers should be autonomous in self-control.
(They become more dynamic, more sophisticated, more and more parallel)

…The larger supercomputers, the more autonomous they should be...

Our expectations Reality

Formal model of a supercomputer Supercomputer

Monitoring data

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

A guarantee of “our expectations = reality”, how this can be done?

• a formal model of supercomputers (model is a graph),

• a set of formal rules,

• a set of reactions,

Autonomous life and control of MSU supercomputers:

Current trend: many decisions about control over HW&SW of supercomputers
must be taken automatically.

Initial deployment, Detection of faults, critical and emergency situations, Turning off minimum amount of hardware, Self

diagnostics, Previous accidents, etc. are done according to a model and rules.

-“Chebyshev” supercomputer, 60 Tflops, 625 CPUs:

10 228 nodes, 24 698 edges, 205 044 attributes, 160 rules, 100 reactions;

- “Lomonosov” supercomputer, 1.7 Pflops, 12 000 CPUs, 2 000 GPU:

116 000 nodes, 332 000 edges, 2 400 000 attributes,...

Supercomputing Co-Design Technologies and Tools
(OctoTron: predictability and autonomous life of supercomputers)

Algorithms and programs…
Are they important in the supercomputing

co-design chain?

What is a good parallel program / algorithm?

– Level of CPU load

Have we ever met these questions before ?

Six generations of computer architectures –
– six battles for parallel applications,

for high performance, good scalability and efficiency…

Yes, often…

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Cray-1 supercomputer

Vector computers

Mid 70-s.

Features: pipelined functional units, vector
instructions, vector registers.

Programming: vectorization of the innermost
loops.

Cray X-MP supercomputer

Vector-parallel computers

80-s.

Features: pipelined functional units, vector
instructions, vector registers.
2-32 processors, shared memory.

Programming: vectorization of the innermost
loops, parallelization of outer loops.

Cray Y-MP supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Intel Paragon XPS140 supercomputer

Massive-parallel computers

90-s.

Features: thousands of processors, distributed
memory.

Programming: explicit message passing and data
distribution, MPI.

Cray T3D supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

DEC AlphaServer

Shared-memory computers

Mid 90-s.

Features: tens/hundreds of processors, shared
memory.

Programming: single address space, local and
shared variables, OpenMP.

Sun StarFire supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

MSU supercomputer “Chebyshev”

Clusters of SPM-nodes

2000-s.

Features: tens/hundreds thousands of nodes,
distributed memory.
Tens of processors/cores, shared memory.

Programming: hybrid parallel programming
technology MPI + OpenMP.

“K” supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

MSU supercomputer “Lomonosov”

Clusters of SMP-nodes with accelerators

Mid 2000-s.

Features: tens/hundreds thousands of nodes,
distributed memory.
Tens of processors/cores, shared memory. Several
accelerators (GPUs, Phi’s).

Programming: MPI+OpenMP+OpenCL/CUDA;

Tianhe-2 supercomputer

6 Generations of computers and programming paradigms
(endless rewriting of applications)

Generations of Parallel Computer Architectures
(or How often have we have to rewrite applications completely?)

Parallel programming paradigms (from the 70s up to now):

70s - Loop Vectorization (innermost)
80s - Loop Parallelization (outer) + Vectorization (innermost)
90s - MPI
mid 90s - OpenMP
mid 2000s - MPI+OpenMP
2010s - CUDA, OpenCL, MPI+OpenMP+accelerators (GPU, Xeon Phi)
…

For each generation of a new computing platform we have to:
- Analyze algorithms to find a way to match better features and properties of
the platform ;
- Express the properties of algorithms we found to obtain efficient
Implementation for the platform.

Changes in computer architectures do not change algorithms! But…

Changes in computer architectures do not change algorithms!
(Algorithms remain the same)

Are these figures different?

What are possible representations of this algorithm?

…

Generations of Parallel Computer Architectures
(or How often have we have to rewrite applications completely?)

Parallel programming paradigms (from the 70s up to now):

70s - Loop Vectorization (innermost)
80s - Loop Parallelization (outer) + Vectorization (innermost)
90s - MPI
mid 90s - OpenMP
mid 2000s - MPI+OpenMP
2010s - CUDA, OpenCL, MPI+OpenMP+accelerators (GPU, Xeon Phi)
…

For each generation of a new computing platform we have to:
- Analyze algorithms to find a way to match better features and properties of
the platform ;
- Express the properties of algorithms we found to obtain efficient
Implementation for the platform.

Can we analyze
algorithms

once and for all
?

Changes in computer architectures do not change algorithms! But…

What properties are important?

What are key properties of an algorithm
we need to analyze and describe to obtain an efficient

implementation in the future?

Unified (complete) description of an algorithm:
What do we need to take into account ?

Description of Algorithms
(What should be included in this description?)

Mathematical description

Serial Complexity

Information Graph

Properties and Features

Resource of Parallelism

Data locality
Scalability

Determinacy

Computational intensity

Input / Output data

Macrostructure
Computational kernel

Locality of computations

Communication profile
Performance

Efficiency

Description of Algorithms
(at the starting point: Cholesky decomposition)

Description

Mathematical Description Remarks on the Algorithm

Description of Algorithms
(at the starting point: Cholesky decomposition)

Computational Kernel

Baseline Serial ImplementationSerial Complexity

Additional Info

Data movements are extremely important!

Data movements are extremely important!

Description of Algorithms
(at the starting point: Cholesky decomposition)

Information Structure

Information Structure with Input/Output Data

Description of Algorithms
(at the starting point: Cholesky decomposition)

Data locality (memory usage profile)

Description of Algorithms
(at the starting point: Cholesky decomposition)

Summary

Description of Algorithms
(at the starting point: Cholesky decomposition)

Efficiency *Scalability (performance) *

* Scalability, performance, efficiency were measured on MSU “Lomonosov” Supercomputer

Description of Algorithms
(at the starting point: Cholesky decomposition)

Dynamic Properties *

* Dynamic Properties were obtained on MSU “Lomonosov” Supercomputer

It is very useful information about the algorithm,
we desperately need it.

CHALLENGES are everywhere…But…

Information structure: how to extract, describe, show… ?
(challenges of the algorithm description)

- How to draw a potentially unlimited graph ?
- How to draw a potentially multidimensional graph ?
- How to show dependency of the graph on a problem size ?

Information structure: how to extract, describe, show… ?
(challenges of the algorithm description)

Information structure: how to extract, describe, show… ?
(challenges of the algorithm description)

Information structure: how to extract, describe, show… ?
(challenges of the algorithm description)

How to formalize the information structure?
Polyhedra, inequalities, vector functions…

Do i = 1, n

Do j = 1, n

A(i,j) = 0

Do k = 1, n

A(i,j) = A(i,j) + B(i,k)*C(k,j)

i

j

k

1

2

1

2

















 








)1(

1

1
1

1

1

из

ii
jj

k

ni
nj




































)2(

1

2

1
1

1

1

1

из

kk

jj

ii

nk

ni
nj

Information structure: how to extract, describe, show… ?
(challenges of the algorithm description)

DO i = 1, n

DO j = 1, n

U(i + j) = U(2*n – i – j + 1)*q + p

EndDO

EndDO

j

i

DO i = 1, n

DO j = 1, n – i

U(i + j) = U(2*n – i – j + 1)*q + p

End DO

DO j = n – i + 1, n

U(i + j) = U(2*n – i – j + 1)*q + p

End DO

End DO

Parallel loop !

Parallel loop !

2

Potential parallelism: how to extract, describe, show… ?
(challenges of the algorithm description)

2 2 2 2
…

} |V|

3 3 3 3 } |E|

1 1 1 1
…

} |V|

…
3 3 3 3 3 } |E|…

3

4 4 4 4 } |E|… 4

5 5 5 5 } |E|… 5 5 5 5 5
…

5 } |E|

6 6 6 6 } |V|… 6

7 7 7 7 } |V|
…

7 7 7 7 7 } |V|7
…

8 8 8 8 } |V|… 8

9 9 9 9 } |V|… 9 10 11

12

exit

next iteration

si
n

gl
e

it
er

at
io

n

V – set of vertices
E – set of edges

Minimum spanning tree
(resource of classic parallelism based

on information structure)

Potential parallelism: how to extract, describe, show… ?
(challenges of the algorithm description)

init process

…compute MST

solve results

exit

compute MST compute MST

compute MST

Minimum spanning tree
(resource of “mathematical” parallelism)

Potential parallelism: how to extract, describe, show… ?
(challenges of the algorithm description)

2 2 2 2
…

} |V|

3 3 3 3 } |E|

1 1 1 1
…

} |V|

…
3 3 3 3 3 } |E|…

3

4 4 4 4 } |E|… 4

5 5 5 5 } |E|… 5 5 5 5 5
…

5 } |E|

6 6 6 6 } |V|… 6

7 7 7 7 } |V|
…

7 7 7 7 7 } |V|7
…

8 8 8 8 } |V|… 8

9 9 9 9 } |V|… 9 10 11

12

exit

next iteration

si
n

gl
e

it
er

at
io

n

V – set of vertices
E – set of edges

Indeterminacy (irregularity)

Indeterminacy (irregularity)

Minimum spanning tree
(resource of information parallelism)

Important for performance

portabiity

Important for performance

portability

Data locality: a number of open questions
(challenges of the algorithm description)

How to evaluate spatial and temporal data locality of a program ?

How to compare spatial and temporal data locality of programs ?

FFTLinpack Random Access

Data locality: a number of open questions
(challenges of the algorithm description)

How to evaluate spatial and temporal data locality of a program ?

How to compare spatial and temporal data locality of programs ?

Can we predict data locality in future implementations by using information from
algorithms only ?

What does it mean “data locality of algorithm” ?
What does it mean “algorithm with good/bad locality” ?
There are no data structures in algorithms, locality can’t be applied to algorithms!
At the same time algorithms form the basis of programs...

Properties and Structures of Algorithms…

Can we represent and describe them?

For each generation of a new computing platform we have to:
- Analyze algorithms to find a way to match better features and properties of
the platform ;
- Express the properties of algorithms we found to obtain efficient
Implementation for the platform.

Can we analyze
algorithms

once and for all
?

Changes in computer architectures do not change algorithms!

Properties and Structures of Algorithms…

- Analyze algorithms to find a way to match better features and properties of
the platform ;

Can we analyze
algorithms

once and for all
?

AlgoWiki
http://AlgoWiki-Project.org

Yes, we can!

Supercomputing Co-Design Technologies and Tools
(A practical approach)

Supercomputers, Architectures

Specific Problems, Grand Challenges, Applications

Mathematical Methods

Algorithms

Programming Technologies

Source Codes

Compilers

Run-time Systems

Mathematical description

Serial Complexity

Information Graph

Properties and Features

Resource of Parallelism

Data locality
Scalability

Determinacy

Computational intensity

Input / Output data

Macrostructure
Computational kernel

Locality of computations

Communication profile
Performance

Efficiency

Algorithms: Theoretical Part
(machine-independent properties,

“Once and for all”) Algorithms: Implementation Issues

Description of Algorithms
(What should be included in this description?)

AlgoWiki

http://AlgoWiki-Project.org

A final remark…

Building Up Intelligible Parallel Computing World

Building Up Parallel Computing World

Problems
and Challenges

Computing
Technologies

Education

Parallel

Parallel
Computing

VIII International Youth Scientific School
“High-Performance Computing Using GRID Systems”

Thank you!

Prof. Vladimir Voevodin
Deputy Director, Research Computing Center, MSU

Head of Department on Supercomputers and Quantum Informatics, CMC, MSU

voevodin@parallel.ru

February 6th, 2017, NARFU, Arkhangelsk

VIII International Youth Scientific School
“High-Performance Computing Using GRID Systems”

Благодарю за внимание!

Prof. Vladimir Voevodin
Deputy Director, Research Computing Center, MSU

Head of Department on Supercomputers and Quantum Informatics, CMC, MSU

voevodin@parallel.ru

February 6th, 2017, NARFU, Arkhangelsk

